Stochastic branching-diffusion models for gene expression.
نویسندگان
چکیده
A challenge to both understanding and modeling biochemical networks is integrating the effects of diffusion and stochasticity. Here, we use the theory of branching processes to give exact analytical expressions for the mean and variance of protein numbers as a function of time and position in a spatial version of an established model of gene expression. We show that both the mean and the magnitude of fluctuations are determined by the protein's Kuramoto length--the typical distance a protein diffuses over its lifetime--and find that the covariance between local concentrations of proteins often increases if there are substantial bursts of synthesis during translation. Using high-throughput data, we estimate that the Kuramoto length of cytoplasmic proteins in budding yeast to be an order of magnitude larger than the cell diameter, implying that many such proteins should have an approximately uniform concentration. For constitutively expressed proteins that live substantially longer than their mRNA, we give an exact expression for the deviation of their local fluctuations from Poisson fluctuations. If the Kuramoto length of mRNA is sufficiently small, we predict that such local fluctuations become approximately Poisson in bacteria in much of the cell, unless translational bursting is exceptionally strong. Our results therefore demonstrate that diffusion can act to both increase and decrease the complexity of fluctuations in biochemical networks.
منابع مشابه
H∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks
Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...
متن کاملAnalytical approximations for spatial stochastic gene expression in single cells and tissues
Gene expression occurs in an environment in which both stochastic and diffusive effects are significant. Spatial stochastic simulations are computationally expensive compared with their deterministic counterparts, and hence little is currently known of the significance of intrinsic noise in a spatial setting. Starting from the reaction-diffusion master equation (RDME) describing stochastic reac...
متن کاملInfinite-scale Percolation in a New Type of Branching Diffusion Processes
We give an account of matter and (basically) a solution of a new class of problems synthesizing percolation theory and branching diffusion processes. They led us to realizing a novel type of stochastic processes, namely branching processes with diffusion on the space of parameters distinguishing the branching “particles” each other. 1 On leave from L.D.Landau Institute for Theoretical Physics, ...
متن کاملStochastic reconstruction of carbon fiber paper gas diffusion layers of PEFCs: A comparative study
A 3D microstructure of the non-woven gas diffusion layers (GDLs) of polymer electrolyte fuel cells (PEFCs) is reconstructed using a stochastic method. For a commercial GDL, due to the planar orientation of the fibers in the GDL, 2D SEM image of the GDL surface is used to estimate the orientation of the carbon fibers in the domain. Two more microstructures with different fiber orientations are g...
متن کاملPath integral formulation and Feynman rules for phylogenetic branching models
A dynamical picture of phylogenetic evolution is given in terms of Markov models on a state space, comprising joint probability distributions for character types of taxonomic classes. Phylogenetic branching is a process which augments the number of taxa under consideration, and hence the rank of the underlying joint probability state tensor. We point out the combinatorial necessity for a second...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 25 شماره
صفحات -
تاریخ انتشار 2012